() 173. 程理此時此刻,并不知道算童在做什么,進入第二層后,他就撲入到算題的海洋之中了。 “今有三分之一,五分之二。問合之得幾何?” 看到第二層中間,那巨大的“零零零零貳”光字垂落下的這道題目,程理不由松了一口氣。 他并沒有馬上回答問題,而是在心里想道。 “這是《九章算經》里,卷一‘方田’中的第7道題目。看來那算童并沒有重新隨機題庫。” 程理剛也很擔心,自己是位面穿越者的身份曝光,那么這個算學碑的題庫,會不會重新選擇一套? 因為按照算學碑的規則,既然有不抽取本位面題庫的規則,明算學碑不希望試練者能抽到自己看過的題目。 所以理論上,既然知道這套問題是自己看過的,算學碑應該會更換一套題庫才對。 “算了,不管了,如果都是一些我記得的題目,倒也好。” 并且程理發現一件奇怪的事情,在那垂落的光幕上,最巨大的問題文字右下方,還有一些用蠅頭字寫著的注明。 “注:出自《九章算經》卷一。” 程理一看,心中有些無語起來,這是算學碑自暴自棄了嗎?連出自哪里都備注出來了? “算了,隨便他怎么搞了,反正對我也沒啥太大的影響。” 程理也不再糾結這個事情,然后他吸取上一次的教訓,這次先在腦子里稍微計算了下,而不是直接靠背的出答案。 因為現在成為修真者后,腦子比以前越來越好使,記憶力也比以前好多了,連帶著一些以前看過的書,都漸漸回憶起來,過目不忘了。 所以程理剛剛才會一不心,直接靠背的出了第一層的問題答案。而因此被算童看出了端倪,從而暴露了自己是穿越者的身份。 “十五分之十一。” 這個問題很簡單,程理只是稍微一計算,就不假思索的出了答案。 很快,程理就通過了第二層。 接下來的第三層,第四層,一直到第二十層,都是《九章算經》的內容。 只不過到后面就越來越難了。 比如,第十八層已經是《九章算術》第八卷“方程”卷的內容。 “今有上禾三秉,中禾二秉,下禾一秉,實三十九斗;上禾二秉,中禾三秉,下禾一秉,實三十四斗;上禾一秉,中禾二秉,下禾三秉,實二十六斗。問上、中、下禾實一秉各幾何?” 程理稍微思索了下。 這道題已經涉及到了代數知識,是九章算術第八卷“方程”的第一題。 實際上用白話文來理解,就是一道三元一次方程組。 3x+2y+z=39 2x+3y+z=34 x+2y+3z=26。 將那段文言文翻譯之后,可以列出這樣一個三元一次方程組。 那么基本上只要是初中數學有好好學習的人,都可以解出答案。 所以程理幾乎沒怎么費力,就很容易計算出答案,答道。 “答:上禾一秉,九斗、四分斗之一,中禾一秉,四斗、四分斗之一,下禾一秉,二斗、四分斗之三。” “正確。” 光字垂落下這兩個大字后,就浮現出前往第19層的通路。 隨后的第19層,則出現了《九章算術》的正負數算法。 這也是《九章算術》在古代世界數學史上做出的一個重要貢獻,那就是第一次明確提出了正負數概念,比西方數學要早那么一千多年。 所以在回答算學碑第19層問題的時候,程理特別把《九章算術》第八卷,第三題的原文解題思路了一下。 “術曰:如方程,各置所取,以正負術入之。” “正負術曰:同名相除,異名相益,正無入負之,負無入正之。其異名相除,同名相益,正無入正之,負無入負之。” 在程理回答后,光字再次垂落“正確”二字,然后程理踏步走上了第20層。 “又有積三十九億七千二百一十五萬六百二十五步。問為方幾何?” 這實際上就是一道開方術的問題,出自《九章算術》第四卷“少廣”卷。 翻譯成白話就是:面積為39億7215萬625的正方形長度是多少? 程理同樣很容易的就給出答案。 “答曰:六萬三千二十五步。” “開方術曰:置積為實。借一算步之,超一等……” 在得到程理的回答后,光字同樣又垂落下“正確”的答案。 在踏上20層的時候,程理心中也有一些感慨。 “九章算術無疑是我國古代數學史上的一個瑰寶,早早就有了負數、分數、開方術、無理數等概念。” 在進入21層后,他發現這一次的題目不是來自《九章算學》了。 而是來自《周髀算經》。 “若求邪至日者,以日下為勾,日高為股,勾股各自乘,并而開方除之,得邪至日。問:若勾三股四,弦幾何?” 程理對這道題目自然不會陌生。 《周髀算經》應該是世界上最早提出勾股定理的一部數學著作,也是華夏目前可查證的成書最早的一部著作。 所以,在心中稍微一計算后,程理就不假思索回道。 “勾三股四,則弦為五。” “正確。” 程理再次踏上下一層。 接下來程理發現,問題開始五花八門起來了。 大部分是來自于算經十書:《周髀算經》、《九章算術》、《海島算經》、《張丘建算經》、《夏侯陽算經》、《五經算術》、《緝古算經》、《綴術》、《五曹算經》、《孫子算經》。 此外還有一些其他著作,比如劉徽的一些著作,割圓術、陽馬術、海島算經等相關問題。 甚至還有一些失傳的著作。 比如祖沖之的《綴術》。 要不是現在的問題右下角都會有一些蠅頭字的備注出出處,程理還不知道這些自己沒見過的題目竟然是出自《綴術》。 不過雖然沒見過題目,但內容都還是程理所學過的,所以程理很容易就回答出了問題。 就這樣一路在這個算學碑里往上走著,一層又一層的攀登著。 程理有一種錯覺,總覺得自己這一路爬上來,是在經歷整個中國古代數學的興衰史。 不過,關于中國古代數學算經的內容,到第100層后,就戛然而止了。 從第90層-第100層的最后十道問題,是一些宋元數學的著作。 比如《數書九章》里提到過的“大衍總數術”,《四元玉鑒》中提到過的內插法、垛積術。 甚至還出現了宋元數學發展史上,很標志性的“元術”和“四元術”。 這是中國古代數學發展史上,將代數符號化的一個重要重要嘗試。 用元術列方程的方法,和現代代數中的列方程方法已經十分類似。 然而《四元玉鑒》已經是宋元數學的絕唱,元末之后,中國傳統數學發展幾乎停滯,整個明清兩代在數學水平上再無發展,甚至還在不停倒退。 而這段時期,卻是西方近現代數學的萌芽和急速發展階段。 東西方文明的發展交替,東方文明在近現代世界發展史中衰落的原因,從數學發展情況上就可以看出一些端倪。 所以,當程理踏進第101層,發現題目不再是一些中國古代數學算經的題目,而是自己更為熟悉的西方近現代數學時。 一股濃濃的悲哀,就浮現在了程理心頭。 這意味著,連算學碑都認為,在元末之后,中國古代數學,沒有任何值得錄入的算經題目了。
【精彩東方文學 www.nuodawy.com】 提供武動乾坤等作品手打文字版最新章節首發,txt電子書格式免費下載歡迎注冊收藏。